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Abstract 
We compare the number of  species represented and the 
spatial pattern of  reserve networks derived using five types 
of  reserve selection algorithms on a set of  vertebrate 
distribution data for the State of  Oregon (USA) .  The 
algorithms compared are: richness-based heuristic algo- 
rithms (four variations), weighted rarity-based heuristic 
algorithms (two variations), progressive rarity-based 
heuristic algorithms (11 variations), simulated annealing, 
and a linear programming-based branch-and-bound algo- 
rithm. The linear programming algorithm provided optimal 
solutions to the reserve selection problem, finding either 
the maximum number of  species for a given number of  
sites or the minimum number of  sites needed to represent 
all species. Where practical, we recommend the use 
of  linear programming algorithms for reserve network 
selection. However, several simple heuristic algorithms 
provided near-optimal solutions for these data. The near- 
optimality, speed and simplicity of  heuristic algorithms 
suggests that they are acceptable alternatives for many 
reserve selection problems, especially when dealing with 
large data sets or complicated analyses. © 1997 Published 
by Elsevier Science Ltd. All rights reserved 

I N T R O D U C T I O N  

The resources that can be devoted to the conservation 
of  biodiversity are limited. Existing nature reserves 
constitute a small fraction of  total area, and there are 
limited funds available to expand the current system 
of  reserves. In addition, many existing natural areas 
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managed for conservation were selected not for their 
biological value but because of their scenic beauty or 
because they had no obvious economic value (Pressey, 
1994). Given these facts, it is critical that conservation 
resources be utilized efficiently so that most, if not all, 
species and ecosystems are represented in a limited 
reserve network. As Margules et al. (1988) observed, 
you cannot manage nature reserves to preserve elements 
of  biodiversity if they are not included in the reserve 
network in the first place. 

A number of  approaches to the problem of selecting 
which sites to include in a reserve network have been 
suggested. A common approach for the site selection 
problem is to use a stepwise (iterative) algorithm (e.g. 
Kirkpatrick, 1983; Ackery & Vane-Wright, 1984; 
Margules et al., 1988; Pressey & Nicholls, 1989; Rebelo 
& Seigfried, 1990; Vane-Wright et al., 1991; Bedward et 
al., 1992; Nicholls & Margules, 1993; Kershaw et al., 
1994; Margules et al., 1994; Lombard et al., 1995; 
Williams et al., 1996). The "greedy" (richness-based) 
algorithm starts with the site containing the most 
species and sequentially includes sites that add the most 
additional species. The greedy algorithm has the 
advantage of speed and simplicity. In addition, by 
design, it incorporates the principle of complementarity 
(Pressey et al., 1993). Other stepwise algorithms, "rarity- 
based" algorithms, choose sites in order of the rarity of  
species they contain or weight heavily species with small 
distribution. Rarity-based algorithms tend to be more 
effective than the richness-based greedy algorithm in find- 
ing the minimum number of  sites necessary to represent 
all species at least once (Kershaw et al., 1994). A some- 
what different approach to the site selection problem is 
to make use of  spatial patterns in the data. Starting 
from a given solution, such as the greedy algorithm, an 
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improved solution may be found by searching for sub- 
stitute sites in the neighborhood of the original solution. 
This operation forms the basis of the "simulated 
annealing" algorithm. 

As has been noted by a number of authors, heuristic 
algorithms may not find an optimal solution to selecting 
a reserve network (May, 1990; Vane-Wright et al., 1991; 
Underhill, 1994; Camm et al., 1996; Pressey et al., 
1996a; Williams et al., 1996). Optimal solutions to the 
reserve network problem can, at least in theory, be 
found by application of integer programming algorithms 
developed in operations research, such as linear pro- 
gramming-based branch and bound algorithms. These 
algorithms have been applied to the design of a reserve 
network in several studies (Cocks & Baird, 1989; Sae- 
tersdal et al., 1993; Church et al., 1996; Willis et al., 
1996). When the number of potential reserve sites is 
large or the stated objective is more complex than 
representing a species once, a branch and bound algo- 
rithm may not find a solution in a reasonable amount of 
time (Pressey et aL, 1996a). 

The purpose of this paper is to compare the perfor- 
mance of different types of reserve selection algorithms: 
(a) greedy richness-based algorithms; (b) rarity-based 
algorithms; (c) a simulated annealing algorithm; and (d) 
a branch-and-bound algorithm. A linear programming- 
based branch and bound solution is, by definition, an 
optimal (efficient) solution to the reserve network selec- 
tion problem, which provides a benchmark to measure 
the performance of other algorithms. However, because 
it may not be possible to find a solution for large or 
complex problems using a branch-and-bound algorithm, 
it is important to understand how well or poorly alter- 
native methods work. In general, we would like to know 
both the speed with which a solution is found and how 
close the solution is to optimal. We compare the 
performance of 19 algorithms on terrestrial vertebrate 
species distribution data for the State of Oregon (USA) 
on the basis of both rates of richness accumulation and 
the total number of sites required to represent all species 
at least once. 

polates distribution patterns by placing a boundary 
around marginal records for a taxon. Grid-based maps 
record the occurrence of a species in cells of a regular 
grid (e.g. Sharrock, 1976; Udvardy, 1981). This format 
makes it possible to record specific information about 
the species in each grid cell. We created grid-based dis- 
tribution maps, using a coverage of 635 km 2 hexagons, 
that were developed for the US Environmental Protection 
Agency (White et al., 1992). There are 441 sampling 
units that completely or partly overlap the political 
borders of Oregon. The reserve selection algorithms 
discussed here are not limited by either the taxa, number 
of species in the data set, or any particular spatial unit of 
analysis. Many geometric, political or economic spatial 
units, as well as many different taxa, have been used 
with site selection algorithms (e.g. Margules et al., 1988; 
Bedward et al., 1992; Kershaw et al., 1994; Williams, 
1994). Distributional information for species (or other 
elements of biodiversity, such as land systems) is the 
only data requirement for this type of spatial analysis. 

Relatively few regions in Oregon have been intensively 
surveyed, so many sites (hexagons) lack occurrence 
records. In constructing the distribution maps, a method 
of interpolating the probable presence of a species 
between confirmed records of occurrence was used. The 
probability of a species occurring in a site (hexagon) 
was given one of three ratings: (1) confident--a verified 
sighting of the species in the site has occurred in the two 
past decades; (2) probable---the site contains suitable 
habitat for the species, there have been verified sightings 
in nearby sites, and in the opinion of a local expert, it is 
highly probable that the species occurs in the site; and 
(3) possible---no verified sightings have occurred in the 
site, the habitat is of questionable suitability for the 
species, and in the opinion of a local expert, the species 
might occur in the site. The ranking of possible is highly 
speculative. Only the classifications of confident and 
probable were used to assign the presence of a species in 
a site. All distribution maps were circulated to local 
experts for review prior to use of the species data base in 
this analysis. 

D E V E L O P M E N T  OF THE SPECIES 
D I S T R I B U T I O N  DATA BASE FOR O R E G O N  

Distribution maps for 426 species of terrestrial verte- 
brates that breed in the State of Oregon were developed 
as a part of a pilot program of a cooperative national 
biodiversity mapping effort in the United States, known 
as the Biodiversity Research Consortium. We selected 
this subset of all species for analysis because their 
distributions are the best known. Observations of 
animals in the field, often accompanied by voucher 
specimens, form the basis of our knowledge of species 
distributions (Udvardy, 1969). Distribution maps can be 
developed from locality records in a number of different 
formats. A simple approach to data modelling inter- 

DESCRIPTION OF ALGORITHMS 

The reserve site selection problem can be represented 
formally as follows: 

Y~  iE 1 yi Max (1) 

subject to 

~--~j~N, xj  > yi for all iE I (2) 

y ~ j , j  xj  < k (3) 

Yi : ( 0 ,  1) for all iE I (4) 

xj = (0, 1) for alljE J, (5) 
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where J = {/'1 j = 1 ..... n} denotes the index set of  candi- 
date reserves from which to select, and I = {il i=  1 ..... m} 
denotes the set of  the species to be covered. The set Ni, a 
subset of  J, is the set of candidate reserves that contain 
species i. The variable xj = 1 if site j is selected, 0 if site 
j is not selected. Constraint (3) limits the total number 
of sites selected to no more than k. The variable yi will 
be one except when xj = 0 for all j in Ni (since constraint 
(2) will force Yi = 0 in that case). In words, constraint (2) 
enforces that the species not be counted as preserved if 
none of  its sites is selected. The following algorithms 
represent different ways of  finding solutions to this 
problem. 

Greedy (richness-based) algorithms (algorithms 1-4) 
In the richness-based greedy algorithm, the first site 
chosen is the one that has maximal species richness. 
Inclusion of  more sites is done so that at each step, the 
inclusion of  the next site adds the most additional 
species to those already represented. When two or more 
sites add the same number of  additional species, several 
procedures can be used to break ties. In algorithm 1, 
when there is more than one site that yields that maximum 
number of  additional species at a step, we choose the 
first site encountered (i.e. the site with the lowest site 
number). In algorithm 2, for each site that yields that 
maximum number of  additional species at a step, we 
choose the site with the highest range-size rarity score 
(see below) for the complementary species (Williams, 
1994). The algorithm can be modified to check for 
within-set redundant choices, i.e. sites selected that are 
found at subsequent steps to contribute no unique species 
(Williams et al., 1996). In these data, no redundant site 
selections were found. 

Where computationally feasible, the optimal solution is 
guaranteed by enumerating all possible combinations of 
sites. In this data set, complete enumeration is practical 
with four sites or fewer. Algorithm 3 begins with the 
complete enumeration solution through four sites. 
Beyond this point, a greedy algorithm (algorithm 1) is 
used. 

Algorithm 4 begins with a greedy algorithm (algorithm 
1) as an initial solution. After completing the greedy 
solution, the algorithm attempts to solve a Lagrangian 
dual formulation of the reserve site selection problem. 
Initial dual multipliers are chosen, based on the greedy 
solution, and the numerical technique known as sub- 
gradient optimization (Fisher, 1981) is used iteratively 
to update the dual multipliers. At each iteration, a fea- 
sible solution to the problem is generated. If  it is better 
than the current solution (the greedy solution at first), 
then the current solution is replaced by this improved 
solution. This technique has the added feature that it 
generates a bound on the optimal solution, allowing us to 
know the maximum deviation that the current solution 
can be from the optimal solution. This heuristic algorithm 
is phase one of  a two-phase exact branch and bound 
algorithm described in Downs and Camm (1996). 

Rarity-based algorithms 

Rarity weight algorithms (algorithms 5 and 6) 
These algorithms weight site selection by the relative 
rarity of the fauna in each site (e.g. Rebelo & Seigfried, 
1990; Williams et al., 1993; Kershaw et al., 1994). A 
score is calculated for each site based on: (1) the number 
of  species; and (2) how infrequent the species are among 
all the sites. In the algorithm weighting richness by 
inverse range-size rarity (algorithm 5), each species is 
scored as the inverse of  the number of  sites in which it 
occurs. In the algorithm weighting richness by the 
inverse square of  range size (algorithm 6), each species is 
scored as the inverse of the square of  the number of  sites 
in which it occurs. The site score is the sum of  the 
component species scores. The selection algorithm 
proceeds by selecting the site with the highest score. The 
scores are then recalculated with the represented species 
removed, and the site with the highest new score is then 
selected. This process is continued until all species have 
been represented. 

Progressive rarity algorithms (algorithms 7-17) 
We used 11 algorithms that are based on the algorithm 
described by Margules et al. (1988). The first sites 
selected are those that contain species unique to that site 
(i.e. occur in no other sites). Next, a site containing the 
least frequent unrepresented species (i.e. those species 
occurring in just two sites if there are any, if not, in 
three sites, etc.) is chosen. If there are ties, the different 
algorithms use a number of different rules for which 
sites to select next. The rules used and the order in 
which these rules are used are described in Table 1. 
Algorithms 9-17 contain a random selection rule. Each 
of these algorithms was run 100 times. Results reported 
are for the best of  the 100 runs. Algorithms 8-17 check 
for and eliminate redundant sites. In addition, algo- 
rithm 8 reorders the sites in the chosen set to maximize 
the number of species covered at each step. 

Simulated annealing (algorithm 18) 
This algorithm begins with the complete enumeration 
solution through four sites. Beyond this point, an algo- 
rithm consisting of  a spatially explicit variation of 
simulated annealing methods is used (Kirkpatrick et al., 
1983; Press et al., 1992). For  each n greater than 4, an 
initial or "seed" set of n sites was determined by choosing 
the first four sites to be those found by complete enumer- 
ation and then using a greedy algorithm (algorithm 1) to 
determine an additional n -  4 sites. Additional seed sets 
were then chosen by fixing all possible combinations of 
2 of  the initial seed set sites and then determining the 
remaining n -  2 sites using algorithm 1. This process 
yields a number of  distinct seed sets up to the number of 
possible combinations of  two sites taken from a set of n 
sites. Annealing was then performed on each of these 
seed sets by setting a radius about each site in the seed 
set and randomly searching the space within this radius. 
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Table 1. Rarity-based algorithms 

A. Description of the rules used in the algorithms 

1. 
2. 

3. 

4. 
5. 

6. 
7. 

8. 

9. 
10. 
11. 

Unique: choose sites with a species that is unique to that site. 
Next Rarest: choose a site containing the next least frequent unrepresented species (i.e. those species occurring in 
just two sites if there are any, if not in three sites, etc.). 
Greatest Number o f  Next Rarest: choose the site containing the greatest number of the next least frequent 
unrepresented species. 
Next Next Rarest: choose a site containing the next next least frequent unrepresented species. 
Greatest Number o f  Next Next Rarest: choose the site containing the greatest number of the next next least frequent 
unrepresented species. 
Richest: choose the site with the highest number of unrepresented species. 
Percent Richest: choose the site with the highest percentage of unrepresented species out of the total number of 
species in the site. 
Total Rarity: choose the site with the highest sum of rarity values for all unrepresented species, where the rarity 
value for a species is the inverse of the number of sites containing the species. 
Average Rarity: choose the site with the highest average rarity value for all unrepresented species. 
Random Selection: site is randomly chosen from eligible sites. 
First Encountered: choose the first site encountered (lowest number site). 

B. Algorithm Description (order of application of rules). 

Algorithm 7: 
(a) 
(b) 
(c) 
Algorithm 8: 
(a) 
(b) 

(c) 
(d) 
Algorithm 9: 
(a) 
(b) 
(c) 
Algorithm 10: 
(a) 
(b) 
(c) 
Algorithm 11: 
(a) 
(b) 
(c) 
Algorithm 12: 
(a) 
(b) 
Cc) 
Algorithm 13: 
(a) 
(b) 
Co) 
Algorithm 14: 
Ca) 
(b) 
(c) 
Algorithm 15: 
Ca) 
Cb) 

(c) 
Algorithm 16: 
(a) 
(b) 

(c) 
Algorithm 17: 
(a) 
(b) 

(c) 

Unique. 
Greatest Number o f  Next Rarest: ties broken with Richness and further ties broken with First Encountered. 
Repeat (b) until all species have been represented. 

Unique. 
Greatest Number o f  Next Rarest: ties broken with Greatest Number o f  Next Next Rarest, further ties broken with 
First Encountered. 
Repeat (b) until all species have been represented. 
Selected sites are re-ordered to maximize complementary richness at each step. 

Unique. 
Next Rarest: ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Richest, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Average Rarity, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Total Rarity, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Next Next Rarest, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Percent Richest, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Richest, further ties broken with Next Next Rarest, further ties broken with Random 
Selection. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Richest, further ties broken with Total Rarity, further ties broken with Random 
Seleetion. 
Repeat (b) until all species have been represented. 

Unique. 
Next Rarest: ties broken with Richest, further ties broken with Next Next Rarest, further ties broken with Total 
Rarity, further ties broken with Random Selection. 
Repeat (b) until all species have been represented. 
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As the algorithm progressed the search radius was 
decreased analogously to the decrease in temperature in 
classical annealing. Because the simulated annealing 
algorithm takes advantage of  spatial correlations 
between the seed sets and optimal solution sets, the 
effectiveness of  the algorithm is inversely proportional 
to the distance between the members of  the seed sets 
and the desired solution set members. 

Branch and bound algorithm (algorithm 19) 
Optimal solutions for the mathematical model of  the 
reserve selection problem may be solved using a linear 
programming-based branch-and-bound algorithm. 
Initially, the linear programming (LP) relaxation of  the 
integer programming model (that is, the binary restric- 
tions replaced by lower and upper bounds of  0 and 1) is 
solved. If the LP relaxation is an integer, the optimal 
solution has been found. If one (or more) of  the vari- 
ables is fractional, branching takes place. A branch is 
the creation of  two new problems (nodes), one with the 
fractional variable set to 0 and the other with the frac- 
tional variable set to 1. The LP relaxation for each of 
the new problems is solved and the process repeated 
until all nodes under consideration have been fathomed. 
A node is fathomed if its solution is infeasible, is an 
integer, or has a value worse than the current incumbent 
integer solution. 

The basic branch-and-bound process described above 
can be computationally intense. However, intelligent 
preprocessing of  problem data and algorithmic 
improvements make the solution of  relatively large 
problems feasible. As an example of preprocessing for 
the reserve selection problem, if two or more species are 
located in the exact same set of locations, only one of  
them needs to be explicitly represented in the model 
(with an objective function coefficient equal to the 
number of  such species). This simple scheme reduces 
the number of  coverage constraints from 426 to 368 in 
the Oregon data, a reduction of  roughly 14% in the 
row size of the model. Algorithmic enhancements, such 
as logical and cost-based variable pegging (fixing a 
variable permanently to 0 or 1 in the branch-and- 
bound), are helpful. The software package LINDO used 
in this work uses a cost-based pegging scheme. 

Often, it is useful to find multiple combinations of 
sites that yield optimal or near-optimal solutions. Find- 
ing multiple solutions can be done by resolving the 
model with a constraint that prevents the original solu- 
tion from being chosen. Using this method repeatedly 
allows us to find as many solutions, ranked in order of  
declining number of  species represented, as desired 
(Camm et al., 1966). 

RESULTS AND ANALYSIS 

The main results of  the algorithm comparison using 
data on all 426 breeding terrestrial vertebrate species in 

Oregon are reported in Table 2. The rows of  Table 2 
represent the different number of  reserve sites included 
in the reserve system, starting with one site and 
continuing up to the total number of sites necessary to 
represent all 426 species in the reserve system at least 
once. The results of different algorithms are reported in 
different columns. Each entry in the table corresponds 
to the number of species covered in the reserve system 
selected by an algorithm for a given number of reserve 
sites. Figure 1 graphs the accumulation curve for a 
subset of the algorithms. 

The results of the branch and bound algorithm 
(algorithm 19) are reported in the last column of Table 
2. The branch and bound algorithm solution gives the 
maximum number of  species that can be covered with a 
given number of sites for these data and the minimum 
number of sites needed for complete representation of 
all species. This solution represents a useful benchmark 
with which to compare the performance of other algo- 
rithms. Not  only can we judge relative performance of  
various algorithms but we can also judge how close an 
algorithm comes to the optimal solution. 

Most of the species in Oregon can be represented in a 
reserve system with relatively few sites. In the branch- 
and-bound solution (algorithm 19), over 90% of the 
species can be represented with five sites (384/426), and 
over 95% of the species can be represented with 10 sites 
(406/426). Beyond 10 sites, adding an additional site 
yields an increase of only one or two species in all of  the 
richness based algorithms. To represent all of  the 
species in the state at least once in the reserve system 
requires selecting only 23 of the total of 441 sites. Like 
many temperate regions, the majority of species in 
Oregon have fairly wide spatial distribution after inter- 
polation. Over 63% of  species are located in more than 
100 sites and less than 10% of the species are located 
in 10 sites or fewer. There are seven species that are 
located in a single site. 

The rapid accumulation of species in relatively few 
sites, in contrast to the larger number of  sites needed for 
complete representation, has implications for conser- 
vation planning. Noss (1987) has suggested that most 
species may be represented in relatively few areas 
representing major habitat types (the "coarse filter"), 
while the conservation needs of  the small number of 
species not represented in those areas are best addressed 
on an individual basis (the "fine filter"). The results 
presented here offer another way of identifying a 
few areas in which most species are thought to be 
represented. These areas could form the nucleus of 
a network of ecosystem reserves. The identity and 
conservation needs of  species not represented in the 
network could be examined to determine if they could 
be conserved in less ambitious ways. 

One pattern that emerges from Table 2 is the different 
relative performance of  greedy richness-based and rarity- 
based algorithms. Greedy richness-based algorithms do 
relatively well at finding large numbers of  species when 
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Table 2. Species accumulation table 

Alg. no. 
Site no. 

1 
Simple Greedy 

2 3 4 
Greedy Enumeration Greedy 

w/Rarity and Greedy w/Subgradient 
Tie-Break Optimiz. 

5 
Inverse Rarity 

Weight 

6 
Sq. Inverse 

Rarity Weight 

7 
Progressive 

Rarity 

1 254 254 254 254 221 224 224 
2 306 306 318 306 290 290 290 
3 347 347 356 356 330 305 330 
4 365 365 374 374 354 345 345 
5 379 379 384 384 363 357 357 
6 388 388 390 388 372 361 361 
7 394 394 394 394 376 365 365 
8 398 398 398 400 380 373 373 
9 401 401 402 403 388 381 379 

10 404 404 404 404 396 396 381 
11 406 406 406 406 399 401 386 
12 408 408 408 408 401 403 390 
13 410 410 410 410 403 405 391 
14 412 412 412 412 405 407 392 
15 414 414 414 414 407 409 394 
16 415 416 415 416 410 411 397 
17 416 417 416 417 414 413 407 
18 417 418 417 418 416 414 415 
19 418 419 418 419 418 416 416 
20 419 420 419 420 420 418 417 
21 420 421 420 421 421 421 420 
22 421 422 421 422 422 423 422 
23 422 423 422 423 424 425 424 
24 423 424 423 424 425 426 426 
25 424 425 424 425 426 
26 425 426 425 426 
27 426 426 

Alg. no. 
Site no. 

8 9 10 11 12 13 14 
Progressive Progressive Progressive Progressive Progressive Progressive Progressive 

Rarity Rarity Rarity Rarity Rarity Rarity Rarity 

1 254 224 224 224 224 224 224 
2 303 290 290 290 290 290 290 
3 343 330 330 330 330 330 330 
4 360 345 345 345 345 345 345 
5 377 357 357 357 357 357 357 
6 387 361 361 361 361 361 361 
7 392 365 365 365 365 365 365 
8 396 367 373 367 367 373 373 
9 400 375 381 368 375 381 381 

10 403 379 384 371 379 383 384 
11 405 380 387 374 382 385 387 
12 407 382 389 378 384 387 389 
13 409 385 391 379 386 390 391 
14 411 400 402 380 398 404 405 
15 413 405 404 384 401 409 409 
16 415 407 406 387 402 411 411 
17 417 408 407 396 406 413 413 
18 419 411 410 403 414 414 414 
19 421 414 418 405 416 416 417 
20 422 417 419 407 418 418 418 
21 423 419 420 410 419 421 419 
22 424 420 423 412 422 423 420 
23 425 423 425 415 424 425 423 
24 426 424 426 417 426 426 425 
25 426 419 426 
26 421 
27 422 
28 423 
29 426 

contd. 
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Alg. no. 
Site no. 

15 16 17 18 19 
Progressive Progressive Progressive Enumeration Branch and 

Rarity Rarity Rarity and Simulated Bound 
Annealing 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

224 224 224 254 254 
290 290 290 318 318 
330 330 330 356 356 
345 345 345 374 374 
357 357 357 384 384 
361 361 361 390 390 
365 365 365 395 395 
373 373 373 398 400 
381 381 381 403 403 
384 384 384 405 406 
387 387 387 407 408 
389 389 389 409 410 
391 391 391 411 412 
405 405 405 413 414 
410 408 410 415 416 
412 410 412 417 418 
414 412 414 418 419 
415 413 415 419 420 
418 416 418 420 422 
419 418 4t9 421 423 
422 419 422 422 424 
424 420 424 423 425 
425 423 425 424 426 
426 425 426 425 

426 426 

414 

394 

374 

354 

334 d~ 
E 

Z 314 

294 

274 

254 

I zx Alg.  #19 branch and boun j~/ u AIg.  #8 p rogress ive  rari ty d 

I I I I I I I I I I I I I I I I I I I I F F I I I 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 

Number  of  s i tes  

Fig. I. Species accumulation curve. 

the n u m b e r  o f  sites is res t r ic ted  so tha t  no t  all o f  the  
species can  be covered.  R a r i t y - b a s e d  a lgor i thms  do  well 
a t  f inding a n e a r - m i n i m u m  n u m b e r  o f  sites needed  to  
cover  all species. 

G r e e d y  r ichness-based  a lgor i thms  (a lgor i thms  1 4 )  
are near  op t imal ,  in the sense o f  cover ing a nea r -maximal  

n u m b e r  o f  species, when the n u m b e r  o f  sites selected is 
between six and  15. Al l  o f  these r ichness-based a lgor i thms 
are within two species o f  the m a x i m u m  n u m b e r  o f  
species t h r o u g h o u t  this range.  Between two and  five 
sites, a lgo r i thms  1 and  2 fall well shor t  o f  achieving the 
m a x i m u m  n u m b e r  o f  species represented.  The  gap  
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between the solutions for algorithms 1 and 2 and the 
optimal solution is 12 species at two sites, 11 species at 
three sites, nine species at four sites, and five species at 
five sites. Algorithms 3 and 4 are optimal or near- 
optimal for a small number of sites, with the exception 
of  algorithm 4 for two sites. In fact, algorithm 4 is 
optimal for one, three, four, five, eight and nine sites. 
However, none of  the four algorithms does well at 
finding the minimum number of sites necessary to 
represent all species. All four algorithms need 26 or 27 
sites to represent all species, which is more sites than 
needed by other algorithms included in the study, with 
one exception. 

In contrast, many of  the rarity-based algorithms 
(algorithms 5-17) represent the entire set of species in 24 
sites. These algorithms place a high priority on sites that 
contain species with narrow distributions even though 
they may not contain a large number of species. Since 
many of  these sites must be included in order to cover 
all species, rarity-based algorithms are relatively efficient 
in finding the minimum number of  sites to represent all 
species (Kershaw et al., 1994). Rarity-based algorithms, 
however, do not represent as many species as do simple 
richness-based algorithms when the number of sites is 
not close to the number needed to represent all species 
(Williams & Humphries, 1994). In general, rarity-based 
algorithms will not fare well in choosing reserve 
networks with many species when the number of sites 
allowed is small and where sites with rare species do not 
coincide with sites with numerous species. 

Algorithms 9-17 were also used in a recent study by 
Pressey et al. (1996) using data from New South Wales 
Western Division. Table 3 shows a comparison of  the 
relative efficiency of  algorithms on the Oregon and 
Western Division Data in finding the minimum number 
of  sites necessary to represent all species. Both the 
minimum values and the average values are reported. In 
general, the algorithms performed relatively better on 
the Oregon data than they did on the Western Division 
data. Using the Oregon data, the average over the nine 
algorithms for the minimum number of sites to represent 

all species was 24-8 sites, only 7-7% above the minimum 
number of sites (23). Over all 100 runs for each of the 
algorithms, the average number of sites needed to 
represent all species was 25.9 sites, 12.7% above the 
minimum. Using the Western Division data, the average 
over the nine algorithms for the minimum number of  
sites to represent all species was 63.7 sites, 17-9% above 
the minimum number of sites (54). Using all runs, the 
average number of sites needed to represent all species 
was 67.2 sites, 24.4% above the minimum. With the 
exception of  algorithm 12, those algorithms that 
performed well (poorly) in the Oregon data did well 
(poorly) in the Western Division data. Algorithm 12 
needed only 24 sites to represent all the species in 
Oregon but needed 66 sites to do so in the Western 
Division. Algorithms 10, 13, 15, 16 and 17 also needed 
only 24 sites in Oregon but all of  these algorithms 
needed less than 60 sites in the Western Division. Algo- 
rithms 9 and 14 needed 25 sites in Oregon and the high 
60s in the Western Division. Algorithm 11 did relatively 
poorly in both data sets, indicating that the average 
rarity rule is not an effective selection rule. 

The advantages of both richness and rarity algorithms 
may be obtained to a large extent by combining them 
sequentially (Williams, 1994). Algorithm 8 is equal to 
the best of the rarity algorithms for obtaining repre- 
sentation of all species with relatively few sites, and 
yet by re-sequencing for complementary richness, it 
achieves a higher species accumulation rate. 

The simulated annealing algorithm (algorithm 18) is 
either optimal or near-optimal for cumulative richness 
through the entire range of sites. Up to four sites, algo- 
rithm 18 uses complete enumeration of  all combinations 
and by definition finds the maximum number of species 
covered. For these data, the simulated annealing algo- 
rithm is able to find optimal solutions beyond four sites 
as well (at five, six, seven and nine sites). The simulated 
annealing algorithm is usually midway between the 
optimal solution and the solution for a greedy algorithm 
beyond nine sites. In order to represent all species, the 
simulated annealing algorithm needs 25 sites. 

Table 3. Comparative results of nine algorithms for complete representation of all species in Oregon and New South Wales Western 
Division data 

Algorithm Oregon Data Western Division Data 

Minimum Average Minimum 
Number of Sites Number of Sites Number of Sites 

Average 
Number of Sites 

Optimal Solution 23 - -  54 - -  
Algorithm 9 25 28-12 69 75.47 
Algorithm 10 24 24.65 57 59-75 
Algorithm 11 29 33.09 79 86.94 
Algorithm 12 24 25.69 66 68.37 
Algorithm 13 24 24-00 59 62.33 
Algorithm 14 25 25-00 67 71.68 
Algorithm 15 24 24.00 59 60.25 
Algorithm 16 24 24.71 58 59.65 
Algorithm 17 24 24.00 59 59.98 
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A key concern in conservation planning is flexibility 
(Pressey et al., 1993). Having flexibility in choosing sites 
for the reserve network may be important because con- 
straints may preclude certain combinations of  sites from 
being selected. In the Oregon data, there are usually 
many different combinations of the same number of  
sites that represent the maximum number of  species. In 
Table 4, using the branch-and-bound algorithm, we 
report the number of  combinations of  sites that yield 
the optimal solution for reserve networks from one site 
to 23 sites (full representation). Other algorithms, e.g. 
simulated annealing, are also capable of  finding multiple 
solutions in cases where they find an optimal solution. 
There is a unique optimal reserve network when the 
number of  sites is four or less. Also, there are few com- 
binations that are even close to optimal. For  example, 
for two sites, there is only one combination of sites that 
represents 317 species, one less than optimal, and only 
one combination of  sites that represents 316 species. 
Somewhat surprisingly, there is also a unique optimal 
combination with eight sites, though here there are 
numerous combinations that yield near-optimal results. 
On the other hand, when the number of sites is more 
than 10, with the exception of 19 sites, there are more 
than 100 combinations of  sites that yield the optimal 
solution. In the case of  12 sites, there are more than 
1000 combinations that yield the optimal solution. 

In Fig. 2, we show the irreplaceability values for the 
various sites in Oregon. Irreplaceability is the percentage 
of  all fully representative sites in which each individual 
site occurs (Pressey et al., 1994). There are 144 solutions 
(combinations of sites) that completely represent all 
species in the minimum number of sites. Note that 
19 out of  23 sites show up in all solutions and have 
irreplaceability values of 100%. If  we allow a larger 
number of  sites to be reserves (e.g. 24 or 25 sites), the 
irreplaceability values for the sites that do not contain a 
species located in a single site will fall below 100%. Any 
combination of  sites that involves selecting all 19 sites 
labeled with 100% in Fig. 2 and one site from each of 
the following sets of hexagons (each identified with its 5 
digit label) constitutes an optimal path: (a) 24651 or 
24652 (50%); (b) 24520, 26425 or 26860 (33.3%); (c) 
26647, 26967, 27073 or 27177 (25%); (d) 25029, 
25030, 25 152, 25 153, 25274 or 25275 06-7%).  

In Fig. 3a, we show the spatial pattern of  the reserve 
network solution for two algorithms, the branch and 
bound algorithm (algorithm 19) and the squared inverse 
rarity weight algorithm (algorithm 6) for l0 sites and for 
full representation. The squared inverse rarity weight 
algorithm solution is fairly representative of  the spatial 
pattern of  the solution of most of the rarity-based 
algorithms. For  10 sites (Fig. 3(a)) there is not much 
overlap between the solution of the branch-and-bound 
algorithm and the squared inverse rarity weight algo- 
rithm. Only three of the 10 site choices coincide and 
several choices lie in different parts of  the state. The 
squared inverse rarity weight algorithm tends to pick 

Table 4. Number of optimal solutions 

Number of Reserve Sites Number of  Solutions 

1 1 
2 1 
3 1 
4 1 
5 5 
6 7 
7 12 
8 1 
9 12 

10 11 
11 200 + 
12 200+ 
13 200+ 
14 200+ 
15 200 + 
16 200 + 
17 200 + 
18 200+ 
19 12 
20 108 
21 200+ 
22 200+ 
23 144 

sites with species with restricted ranges, while the branch- 
and-bound algorithm tends to pick areas that have many 
complementary species. In contrast, at complete repre- 
sentation of all species in the reserve network, Fig. 3(b), 
19 site choices can be the same for both algorithms. 
(Since there are multiple solutions for the branch-and- 
bound algorithm, there is some flexibility on which sites 
are included.) Two more site choices are adjacent and 
one more site choice is two sites apart. With complete 
representation, all sites containing species with restricted 
ranges tend to be chosen by all algorithms, leading to a 
convergence of spatial patterns. 

In Fig. 3(c), we show the 10 sites that individually have 
the greatest number of species. Notice that all of  these sites 
are clustered together in one part of  the state. It is inter- 
esting to note that only one of these sites is chosen by the 
algorithms both at 10 sites and at full representation. 
These maps clearly show the importance of  com- 
plementarity vs. species richness in designing a reserve 
system (Williams et al., 1996). 

One concern with using relatively complex algorithms 
like the branch and bound or the simulated annealing 
algorithm is that it may take so long to find a solution 
with these algorithms that using them on real conser- 
vation problems is not practical. This concern did not 
turn out to be a problem in our analysis conducted with 
the Oregon data. Using a 486 PC and a commercial 
software package (LINDO), it took 23.4 min to find the 
complete branch-and-bound algorithm solution for the 
maximum number of  species that could be covered from 
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Fig. 2. Irreplaceability values for sites in Oregon. 

one site up to full coverage (23 sites). The maximum 
time to find a solution for any given number  of  sites was 
4-7 min for six sites. In 16 out of  23 cases, an optimal 
solution for a given number  of  sites was found in less 
than 1 rain. Using more specialized software or a more 
powerful computer  would shorten these times further. 
How much larger the data set can be in terms of  sites or 
number  of  species or how much more complex the 
objective can become before the branch and bound 
approach becomes impractical is still an open question. 
In a problem with 1885 sites and 248 attributes (land 
systems), finding an optimal solution took 10 days on a 
SUN IPX workstation (Possingham et al., 1993), 
though the solution time was reported to be cut to 10 h 
more recently (Possingham, pers. comm.). The simu- 
lated annealing algorithm also found a solution within a 
reasonable period of  time. Complete enumeration is the 
time consuming part  of  the approach.  Up to four sites, 
the solution takes c 2.5 min. At four sites, it takes 
almost 2 h (119 min) to find the solution. However, 
beyond four sites, the time taken to find a path using 
simulated annealing is < 1 min for any given number  of  
sites. 

At the other extreme, the simple richness and rarity 
algorithms take just 4-5 s (or 8 s with within-set redun- 
dancy checks at each step) on a 486 PC. Computing 
time is not an issue when using these algorithms, even 
with very large data sets. 

D I S C U S S I O N  

Reserve selection algorithms can be used to find efficient 
combinations of  sites capable of  representing a group of  
species in a region. The analysis yields results that are 
indicative of  combinations of  areas that may be high 
priority for conservation. This analysis, however, does 
not address issues of  the size, shape, or quality of  a 
natural area necessary to maintain viable species popu- 
lations or functional ecosystems. No information is 
available in this data set about  habitat condition in 
different sites. Field surveys are needed to confirm the 
conservation value of potential reserve sites. Further, 
landscape context should be considered during natural 
area design (Noss, 1987). Additional factors, such as 
acquisition and management  costs, political constraints 
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~ Algorithm 6 Algorithm 19 

Fig. 3a. Branch-and-bound (algorithm 19) and 

and proximity to other reserves may also need to be 
addressed when recommending a natural area network 
in a real-world context (Pressey et  al., 1996). 

For simplicity, we have assumed that a species is 
represented in the reserve network if it is contained in at 
least one selected site. A more conservative approach 
would be to modify the algorithms to require multiple 
representations of each species (Williams et al., 1996), or to 
require that a certain percentage of the species geographic 
range be represented. Algorithms can also be modified to 
give preference to sites in proximity to one another, 
increasing the opportunity for landscape linkages 
(Nicholls & Margules, 1993). 

Many regions have existing natural reserves, which 
can be factored into the analysis. The effectiveness of 
the current reserve network can be evaluated by looking 
at coverage of the existing network and by comparing 
reserve networks both with and without a constraint to 
include the current reserve sites. Further, if the biological 
potential of  a currently degraded site can be modelled, one 
can assess the contribution that restoring a particular 
site would have. In the Oregon data, the hexagonal grid 
cells used to develop species distribution maps are larger 

square inverse rarity weight (Algorithm 6): 10 sites. 

than most natural areas. Quantifying the representation 
of species in existing natural areas will require higher 
resolution maps. Such maps are being developed for the 
Gap Analysis Program (Scott et  al., 1993; Scott & Csuti, 
1997) by linking species to a higher resolution (100 ha 
minimum mapping unit) vegetation cover type map. 
While various algorithms are useful in identifying a 
minimum set of  areas in which all species are predicted 
or known to be represented, we do not mean to imply 
that natural and semi-natural lands outside of nature 
reserves do not play an important role in maintaining 
regional species and ecosystem diversity (Scott et  al., 
1990). 

The combined terrestrial vertebrate data set used here 
represents only a small subset of  all species, albeit ones 
about which we have the best distributional infor- 
mation. Several recent studies (Prendergast et  al., 1993; 
Saetersdal et  al., 1993; Lawton et al., 1994; Williams & 
Gaston, 1994) have pointed out that areas of  species 
richness ("hotspots")  for different major taxa may not 
coincide, raising questions about the appropriateness of  
selecting a reserve network based on only a few major 
taxa. There is a difference, however, between selecting 
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Algorifi~m 6 W Algorithm 19 

Fig. 3b. Branch-and-bound (algorithm 19) and square inverse rarity weight (Algorithm 6): full coverage. 

hotspots for a taxon, whose species lists are often spatially 
correlated (Fig. 3(c)), and selecting a set of areas in 
which most or all species of the taxon are represented. 
These areas reflect dissimilar species lists, often the 
result of  dissimilar environments. Complementary areas 
may be relatively depauperate, but are included because 
of maximally different species content. As a result, we 
hypothesize that a set of areas in which one major taxon 
is completely represented may also do a gooo job 
representing the diversity of  unrelated taxa. Further 
analysis of  the Oregon data set by some of  us (Kiester, 
Huso and Sahr) supports this hypothesis among terrestrial 
taxa (vertebrates, trees and butterflies). 

The number of sites needed to represent all species in 
a taxon varies greatly. Large-bodied, mobile species that 
are habitat generalists and have a wide geographic 
distribution need the fewest sites to be fully represented. 
Taxa that exhibit high beta and gamma diversity require 
a greater proportion of sites to represent all species in 
the region. In Natal, South Africa, all 570 bird species 
can be represented in 27 out of  166 quarter degree grid 
squares by an iterative richness algorithm, while all 65 
carnivore and ungulate species can be represented in 

nine sites. In contrast, plant species, that show much 
higher inter-site turnover due to their lower mobility 
and greater habitat specificity, require 140 of the 166 
sites to represent all 6111 species. The 400 species 
of grasses require 51 sites to be fully represented (M. 
Kershaw, pers. comm.). When woodlands were selected 
iteratively in Norway, only 20% of the total area was 
needed to incorporate all bird species, compared to 75% 
to include all plant species (Saetersdal et al., 1993). 

Ideally, an evaluation should be made at a distinct 
biogeographic level to minimize the problem of giving 
equal weight to endemic species vs. those widely 
distributed outside of the region. Both Hunter and 
Hutchinson (1994) and Lesica and Allendorf (1995) 
argue the merits of protecting peripheral populations of 
widespread species. Regional conservation requirements 
may make it valid, in some cases, to target conservation 
of  species that are rare in the region but common 
elsewhere--for example to represent ecotypic variation 
(Rebelo, 1994). In general, however, we feel that 
conserving species that are locally rare but common 
elsewhere should not take precedence over conserving 
species that are globally rare. A practical solution to this 
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2 ~ 5 9 ;  

Fig. 3c. Sites of maximum species richness. 

problem would be to apply a consistent criterion to 
eliminate species peripheral to the region of analysis or 
to base measures on data for rarity at the global scale 
(Williams et al., 1996). In reality, most practical 
conservation decisions are made at national or other 
political levels. Sensible processing of the data, and 
choice of  scale to be used can help to avoid some of these 
potential problems. We recognize the limitations inher- 
ent in carrying out a reserve selection exercise for a 
political unit, rather than for a biologically defined 
region, and intend to pursue bioregional analyses when 
data for surrounding states become available. 

It should be noted that the data we used are still being 
edited and refined. Also, the data have not yet been 
subjected to field validation. Species lists for units of  
analysis (i.e. hexagons) are largely predicted rather than 
confirmed lists. A similar data set, developed for 419 
terrestrial vertebrates in the State of  Idaho (USA), was 
used to predict species lists for natural areas for which 
there were existing species lists based on field obser- 
vation. Compar ison of predicted and observed lists 
indicated a 11% omission error and a 21% commission 
error (Scott et al., 1993), although some commission 

errors may reflect species difficult to detect. We expect 
similar levels of  accuracy in Oregon. When an actual 
reserve is created, it may contain a different set of  
species than did the (hexagon) site. Given com- 
plementarity, the potential contribution of other sites 
will change and a new analysis should be performed to 
select additional sites. 

C O N C L U S I O N S  

A wide range of approaches to selecting reserve net- 
works has been explored and methods for finding opti- 
mal solutions are now available. However, as Pressey et 
al. (1996a) point out, there are a number  of  practical 
constraints that are likely to be encountered in devel- 
oping a reserve network for any jurisdiction (e.g. land 
tenure, habitat quality, costs, social attitudes, political 
opposition). Incorporat ing these constraints makes the 
job of finding a solution more difficult. Work remains to 
be done in devising methods to solve for optimal solu- 
tions in more complex problems and in assessing the 
relative performance of various algorithms (Pressey et 
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al., 1996a). The existence of alternative paths to satisfactory 
reserve systems gives land use planners and decision 
makers the flexibility (Pressey et al., 1993) needed to 
balance conservation goals with competing land uses. 

The work of  Kirkpatrick (1983) and others has 
demonstrated the practicality of  iterative methods of 
reserve selection for achieving the conservation goal of 
representing the maximum number of  species or land 
classes in a constrained reserve network. Here, we have 
compared a number of  approaches to reserve network 
selection and described the strengths and limitations of  
each. We agree with Underhill (1994) that linear integer 
programming algorithms, such as branch-and-bound 
algorithms, are most likely to find optimal solutions to the 
reserve selection problem. Simpler heuristic algorithms 
can, however, come very close to the optimal solution in 
the right circumstances. Their speed and convenience 
for interactive analysis, when used in software programs 
such as W O R L D M A P  (Williams, 1994), will continue 
to make them a valuable conservation tool. 
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